

Analysis of adherence to HIV-positive quality of care indicators and their impact on Health Related Quality of Life: a Spanish cross-sectional study:

A. Gimeno-Garcíaab, C. Montero-Hernándezab, A. Franco-Morenoc, S. Arponenc, E. García-Carrascod, D. Corps-Fernándezab, B. Alejosc, D. Varillas-Delgadob, P. Galindo-Jaraf, M. García-Navarroa.

Servicio de Medicina Interna. Hospital Universitario de Torrejón. Torrejón de Ardoz, Madrid. España. "Universidar de Francisco de Vitoria. Pozuelo de Alarcón, Madrid. España. "Servicio de Medicina Interna. Hospital Universitario de Tescorial. San Lorenzo de El Escorial. Madrid. España." "Universitario de Tescorial. San Lorenzo de El Escorial." Madrid. España. "Universitario de Tescorial. San Lorenzo de El Escorial." Madrid. España. "Universitario de Tescorial. San Lorenzo de El Escorial." Madrid. España. "Universitario de Tescorial. San Lorenzo de El Escorial." Madrid. España. "Universitario de Tescorial." San Lorenzo de El Escorial. "España. "Universitario de Tescorial." Madrid. "España." "Universitario de Tescorial." Madrid. "España. "Universitario de Tescorial." Madrid. "España." "Universitario de Tescorial." "España." "Universitario de Tescorial." "Universitario de Tescorial." "España." "Universitario de

BACKROUND:

Medical care must be effective and meet quality requirements from a professional knowledge but must also be perceived as beneficial by the patient.

The objective of this work was to assess the degree of compliance with the current quality of care indicators and check whether their adherence improves the Health Related Quality of Life (HRQL) perceived by the patient, in a Spanish cohort of HIV patients

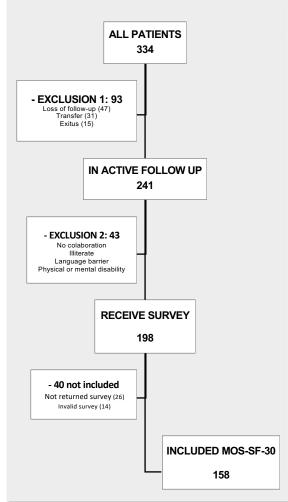
MATERIALS AND METHODS:

All HIV patients attended in a Spanish hospital between 2011-2017 were included for compliance with HIV quality indicators proposed by GeSIDA (Spanish AIDS Study Group)(1).

HRQL was evaluated using the Medical Outcomes Study Survey-Short Form questionnaire of 30 items. (MOS-SF-30). It provides a score from 0 to 100, with 0 being the lowest grade of HRQL and 100 the highest(2). The questionnaire was given between February-November 2017 to those who signed the informed consent

RESULTS:

In the indicator analysis 334 patients were included, whose compliance was high: of the 47 indicators evaluated, 35 met the established standard (74.46%). Reminders have been implanted in the clinical history to improve some indicators whose compliance is suboptimal.


The HRQL of 158 patients was assessed: 93 were excluded for loss of follow-up, transfer or decease, 43 for illiteracy, language barrier, significant physical or mental disability, or declined to participate. Of the 198 surveys delivered, 26 were not returned, (response rate: 87%), and 14 were invalid (Figure 1). The mean score of the MOS-SF-30 was 68.2 (95%CI: 65.1-71.3).

Only compliance with 2 of the 47 indicators evaluated was related to an increase in HRQL (Table 1): 13-Health education in the initial assessment and 17-Basic renal study in HIV patients.

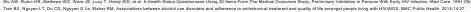
Compliance with indicator 26-evaluation of alcohol intake is associated with a worse HRQL. The association between harmful alcohol consumption and worse HRQL is known in the HIV population(3).

Figure 1: Study Outline: Patients Included Between 2011 and 2017

Tabla 1: Univariate analysis of quality indicators related to HRQL (MOS-SF-30)

		Patients evaluated by the indicator		Patients who meet the indicator	GeSIDA Standard	Mean difference CI 95%
N	Indicator	N	%	%		
6	Delay in referral to specialized care	30	19.0	90.0	100	-10.15 (-29.98; 9.68)
7	Late diagnosis of HIV in specialized care	63	39.9	25.4	< 25	-5.07 (-14.61; 4.46)
8	HIV diagnosis with previous negative serology	63	39.9	65.1	80	1.01 (-7.77; 9.80)
10	Complementary tests in the initial assessment	158	100.0	98.1	95	-1.49 (-24.25; 21.28)
11	HIV plasma viral load	158	100.0	100.0	100	-
12	Determination of lymphocyte subpopulations (CD4)	158	100.0	100.0	100	-
13	Health education at initial assessment	158	100.0	63.3	95	10.57 (4.35; 16.80)*
15	Indication of treatment with <350 CD4 without prior ART	55	34.8	0.0	<10%	-
16	Periodicity of visits (regular follow-up)	147	93.0	90.5	85	7.30 (-3.58; 18.19)
17	Basic renal study in HIV+ patients	142	89.9	99.3	100	37.36 (-0.85; 75.57)*
20	LTI detection	129	81.6	63.6	90	5.61 (-1.66; 12.87)
21	Vaccination against hepatitis A	45	28.5	93.3	85	9.60 (-17.33; 36.52)
22	Vaccination against hepatitis B	62	39.2	96.8	85	-0.17 (-26.97; 26.63)
23	Vaccination against pneumococcal infection	143	90.5	94.4	85	9.51 (-4.75; 23.77)
24	Prophylaxis against Pneumocystis jirovecii and Toxoplasma	30	19.0	96.7	100	-5.38 (-47.42; 36.66)
25	Treatment and prevention of smoking	60	38.0	76.7	95	3.30 (-8.84; 15.43)
26	Alcohol intake assessment	147	93.0	4.1	95	-18.06 (-34.04; -2.08)*
29	Syphilis screening	101	63.9	53.5	70	3.93 (-3.08; 10.95)
30	LTI treatment	14	8.9	92.9	95	-2.31 (-42.04; 37.42)
31	Loss to follow-up	74	46.8	0.0	≤5	-
35	Adaptation of initial ART to the guidelines	74	46.8	100.0	95	-
36	Initiation of ART in patients with symptomatic B/C events	18	11.4	100.0	90	-
37	First visit after the establishment of ART	74	46.8	93.2	90	-8.85 (-24.87; 7.17)
38	Undetectable viral load (<50 copies/ml) at week 48	70	44.3	98.6	80	-1.30 (-37.26; 34.65)
39	Treatment with Abacavir without previous HLA-B 5701	37	23.4	0	0	-
40	Treatment changes during the first year	65	41.1	12.3	<30	-8.63 (-22.11; 4.84)
41	Record of adherence to treatment	155	98.1	89.7	95	-8.91 (-19.12; 1.30)
42	Study of resistance in case of virologic failure	18	11.4	83.3	90	14.60 (-15.28; 44.48)
44	Average expenditure per patient in first treatment	13	6.3	5748.6	*	-
45	ART in pregnant women with HIV	5	3.2	100.0	100	-
47	Vertical transmission incidence	5	3.2	0.0	<1%	-
49	Evaluation by CHILD or MELD for chronic liver disease	4	2.5	75.0	100	11.33 (-53.32; 75.98)
50	Evaluation of hepatitis C virus coinfection	4	2.5	100.0	90	-
54	HBsAg patients receiving effective treatment	8	5.1	100.0	90	-
55	Ultrasound control in cirrhotic patients	3	1.9	66.7	90	11.00 (-275.10; 297.10)
56	Cardiovascular risk assessment	142	89.9	64.1	90	3.20 (-3.57; 9.96)

*p-value<0.05


CONCLUSIONS:

Compliance with the quality indicators showed little relationship with the HRQL reported by the patients. Achieving the classic health goals does not imply meeting the patient's expectations or improving their HRQL.

It is necessary to analyze our clinical practice in the care of HIV patients to identify areas of improvement in medical care and improve their HRQL.

BIBLIOGRAFÍA:

